Number and Operations

Direct/Inverse Proportion

a and b are directly proportional $\leftrightarrow \frac{a}{b} = k$

a and *b* are inversely proportional $\leftrightarrow ab = k$

k is the proportional constant

Arithmetic Sequence/Series

$$d = a_{n+1} - a_n$$

$$a_n = a_1 + d(n-1)$$

$$S_n = \frac{n}{2}(a_1 + a_n) = \frac{n}{2}(2a_1 + d(n-1))$$

Geometric Sequence/Series

$$r = \frac{a_{n+1}}{a_n}$$

$$a_n = a_1 r^{n-1}$$

$$S_n = \frac{a_1(1-r^n)}{1-r}, r \neq 1$$

$$S_{\infty} = \frac{a_1}{1-r}, |r| < 1$$

 a_n = value of the nth term, a_1 = value of the first term, d = common difference, r = common ratio, n = place of a specific term, S_n = sum of the first n terms, and S_{∞} = sum of infinite terms (geometric only)

Counting

 $n\mathbf{P}r =$ choosing *r* items from a total of *n* items, order matters (no repetition)

 $n\mathbf{C}r = \binom{n}{r}$ = choosing *r* items from a total of *n* items, order does not matter (no repetition)

 $n! = n \times (n-1) \times (n-2) \times \dots \times 3 \times 2 \times 1$

0! = 1

Logarithms

 $\log_a x = y \leftrightarrow a^y = x$ $\log_a (xy) = \log_a x + \log_a y$ $\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$ $\log_a (x^y) = y \log_a (x)$ $\log_a a = 1$ $\log_a 1 = 0$ $\log_a 0 = \text{undefined}$ $x = \log_a a^x$

Vector

For vector $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ [omit u_3/v_3 respectively if vector is twodimensional]

 $|\boldsymbol{u}| = \sqrt{(u_1)^2 + (u_2)^2 + (u_3)^2} \text{ [this is called the magnitude, which is the vector's length]}$ $k\boldsymbol{v} = \langle kv_1, kv_2, kv_3 \rangle$ $\boldsymbol{u} \pm \boldsymbol{v} = \langle u_1 \pm v_1, u_2 \pm v_2, u_3 \pm v_3 \rangle$ $\boldsymbol{u} \cdot \boldsymbol{v} = u_1v_1 + u_2v_2 + u_3v_3$

Matrices

For matrix
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, determinant of A, det $(A) = |A| = ad - bc$

For matrix *A* with *m* rows and *n* columns (a *m*-by-*n* matrix), and matrix *B* with *n* rows and *p* columns (a *n*-by-*p* matrix), where $m \neq n \neq p$:

AB is a matrix with *m* rows and *p* columns [column of A = row of *B*]

BA is undefined [column of $B \neq row$ of *A*]