Number and Operations

Direct/Inverse Proportion
a and b are directly proportional $\leftrightarrow \frac{a}{b}=k$
a and b are inversely proportional $\leftrightarrow a b=k$
k is the proportional constant

Arithmetic Sequence/Series

$d=a_{n+1}-a_{n}$
$a_{n}=a_{1}+d(n-1)$
$S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)=\frac{n}{2}\left(2 a_{1}+d(n-1)\right)$
Geometric Sequence/Series
$r=\frac{a_{n+1}}{a_{n}}$
$a_{n}=a_{1} r^{n-1}$
$S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}, r \neq 1$
$S_{\infty}=\frac{a_{1}}{1-r},|r|<1$
$a_{n}=$ value of the $n^{\text {th }}$ term, $a_{1}=$ value of the first term, $d=$ common difference,
$r=$ common ratio, $n=$ place of a specific term, $S_{n}=$ sum of the first n terms, and
$S_{\infty}=$ sum of infinite terms (geometric only)

Counting

$n \mathbf{P} r=$ choosing r items from a total of n items, order matters (no repetition)
$n \mathbf{C} r=\binom{n}{r}=$ choosing r items from a total of n items, order does not matter (no repetition)
$n!=n \times(n-1) \times(n-2) \times \ldots \times 3 \times 2 \times 1$
$0!=1$

Logarithms

$$
\begin{aligned}
& \log _{a} x=y \leftrightarrow a^{y}=x \\
& \log _{a}(x y)=\log _{a} x+\log _{a} y \\
& \log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y \\
& \log _{a}\left(x^{y}\right)=y \log _{a}(x) \\
& \log _{a} a=1 \\
& \log _{a} 1=0 \\
& \log _{a} 0=\text { undefined } \\
& x=\log _{a} a^{x}
\end{aligned}
$$

Vector

For vector $\boldsymbol{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\boldsymbol{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ [omit u_{3} / v_{3} respectively if vector is twodimensional]
$|\boldsymbol{u}|=\sqrt{\left(u_{1}\right)^{2}+\left(u_{2}\right)^{2}+\left(u_{3}\right)^{2}}$ [this is called the magnitude, which is the vector's length]
$k \boldsymbol{v}=\left\langle k v_{1}, k v_{2}, k v_{3}\right\rangle$
$\boldsymbol{u} \pm \boldsymbol{v}=\left\langle u_{1} \pm v_{1}, u_{2} \pm v_{2}, u_{3} \pm v_{3}\right\rangle$
$\boldsymbol{u} \cdot \boldsymbol{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$

Matrices

For matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, determinant of $A, \operatorname{det}(A)=|A|=a d-b c$
For matrix A with m rows and n columns (a m-by- n matrix), and matrix B with n rows and p columns (a n-by- p matrix), where $m \neq n \neq p$:
$A B$ is a matrix with m rows and p columns [column of $A=$ row of B]
$B A$ is undefined [column of $B \neq$ row of A]

