Algebra and Functions

Quadratics

For $a x^{2}+b x+c=0$:
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

For $y=a x^{2}+b x+c:$
y-intercept $=(0, c)$

Sum of roots $=\frac{c}{a}$
Product of roots $=-\frac{b}{a}$

When rewritten as $y=a(x-p)(x-q) \rightarrow p, q$ are roots $/ x$-intercepts of the function.

When rewritten as $y=a(x-h)^{2}+k \rightarrow(h, k)$ is the vertex of the function.
$x=h=-\frac{b}{2 a}$ is the axis of symmetry for the quadratic function.
If $b^{2}-4 a c>0$, the quadratic has two real roots.

If $b^{2}-4 a c=0$, the quadratic has one real root (often referred to as a double root).

If $b^{2}-4 a c<0$, the quadratic has no real roots (or it has two complex roots).

Polynomials

Let $p(x)$ be a polynomial.

Factor theorem: $x-a$ is a factor $\leftrightarrow p(a)=0$

Remainder theorem: when $p(x)$ is divided by $x-b$, the remainder of the division is equal to $p(b)$

If $(x-c)$ and $(x-d)$ are both factors of $p(x)$, then $(x-c)(x-d)$ is also a factor of $p(x)$.
$x-k$ is a factor $\leftrightarrow x=k$ is a root $/ x$-intercept of the polynomial.

If complex number $x=a+b i$ is a root of polynomial $p(x)$, then $x=a-b i$ (the complex conjugate) must also be a root of $p(x)$.

